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Querying a Database

Do databases have something to do with geometry?

Queries in a database can be interpreted geometrically.
Transform records in a database into points in a
multi-dimensional space.
Transform queries about the records into queries on the set of
points.
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A typical query interpreted geometrically

date of birth

salary

3000

4000

19500000 19559999

G. Ometer
born: Aug 19, 1954
salary: $3200
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A query in 3 dimensions

date of birth

salary

3000

4000

19500000 19559999

2

4

chlidren
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The geometric approach

We are interested in answering queries on d fields of the records
in our database.

Transform the records to points in d-dimensional space.
The transformed query asks for all points inside a d-dimensional
axis-parallel box.
Such a query is called ‘‘rectangular’’ or ‘‘orthogonal’’ range query.
We are going to present data structures for such queries.
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The problem

Data
A set of points P = {p1, p2, . . . , pn} in 1-dimensional space (a set of real
numbers).

Query
Which points lie inside a ‘‘1-dimensional query rectangle’’? (i.e. an
interval [x : x ′])
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Efficient Data Structures

Arrays
Solve the problem, but
do not generalize,
do not allow efficient updates.

Balanced Binary Search Trees (BBST)
The leaves of T store the points of P,
internal nodes store splitting values that guide the search.
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Balanced Binary Search Trees

v

xv

xv < xjxi ≤ xv

pi pj
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A search with the interval [18 : 77]

3 10
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A search with the interval [x, x ′]

Search for x and x ′ in T . The search ends to leaves µ and µ′.
Report all the points stored at leaves between µ and µ′ plus,
possibly, the points stored at µ and µ′.

Remark
The leaves to be reported are the ones of subtrees that are rooted at
nodes whose parents are on the search paths to µ and µ′.
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The selected subtrees

µ µ′

root(T )

vsplit
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Algorithms

FindSplitNode(T , x, x ′)
v ← root(T)
while v is not a leaf and (x′ ≤ xv or x > xv) do

if x′ ≤ xv then
v ← lc(v)

else
v ← rc(v)

return v

1D-RangeQuery(T , [x : x ′])
vsplit ← FindSplitNode(T, x, x′)
if vsplit is a leaf then

check if xvsplit must be reported
else {follow the path to x }

v ← lc(vsplit )
while v is not a leaf do

if x ≤ xv then
ReportSubtree(rc(v)) {subtrees right of path}
v ← lc(v)

else
v ← rc(v)

check if xv must be reported
. . .
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Correctness and Performance

Any reported point lies in the query range.
Any point in the range is reported.

O(n) storage.
O(n log n) preprocessing.
Θ(n) worst case case query cost.
O(k + log n) output sensitive query cost: O(k) to report the points
plus O(log n) to follow the paths to x, x ′.
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The problem

Data
A set of points P = {p1, p2, . . . , pn} in the plane.

Query
Which points lie inside a query rectangle [x : x ′]× [y : y′]?

Remark
A point p = (px , py) lies inside this rectangle iff px ∈ [x, x ′] and
py ∈ [y, y′].
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The way the plane is subdivided
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The corresponding binary tree
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Algorithm

BuildKdTree(P, depth)
if P contains only one point then

return a leaf storing this point
else

if depth is even then
split P with vertical l through median x-coord of points in P
P1 ← the set of points left of l or on l
P2 ← the set of points right of l

else
split P with horizontal l through median y-coord of points in P
P1 ← the set of points below l or on l
P2 ← the set of points above l

vleft ← BuidKdTree(P1, depth + 1)
vright ← BuidKdTree(P2, depth + 1)
create a node v storing l
lc(v)→ vleft
rc(v)→ vright
return v

Remarks
We should split at the n

2 -th smallest coordinate.
Preprocessing involves sorting both on x- and y-coordinate.
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Building time and storage

The building time satisfies the recurrence:

T(n) =
{

O(1) if n = 1
O(n) + 2T(n

2 ) if n > 1

T(n) = O(n log n) which subsums the preprocessing time.
O(n) storage: each leaf stores a distinct point of P.
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Nodes in a kd-tree and regions in the plane

l1
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v

region(v)
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Regions and the query algorithm

Internal nodes of a Kd-tree correspond to rectangular regions of
the plane which can be unbounded on one or more sides.
Such regions are bounded by splitting lines stored at ancestors of
the internal nodes.
region(root(T)) is the whole plane.
A point is stored in a subtree rooted at a node v iff it lies in
region(v).
We search the subtree rooted at v only if the query rectangle
intersects region(v).
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A query on a kd-tree
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Algorithm

SearchKdTree(v, R)
if v is a leaf then

report the point stored at v if it lies in R
else

if region(lc(v)) is fully contained in R then
ReportSubtree(lc(v))

else
if region(lc(v)) intersects R then

SearchKdTree(lc(v), R)
if region(rc(v)) is fully contained in R then

ReportSubtree(rc(v))
else

if region(rc(v)) intersects R then
SearchKdTree(rc(v), R)

Works for any query range R (e.g.
triangles).
O(k), in order to report k points.
How many other nodes are visited?
For these nodes v, the query range
intersects region(v).
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Query time analysis

Any vertical line intersects region(lc(root(T))) or
region(rc(root(T))) but not both.
If a vertical line intersects region(lc(root(T))) it will always
intersect the regions corresponding to both children of lc(root(T)).
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Query time analysis

The number of intersected regions in a kd-tree storing n points,
satisfies the recurrence:

Q(n) =
{

O(1) if n = 1
2 + 2Q(n

4 ) if n > 1

Q(n) = O(
√

n). The total query time is O(
√

n + k)
The analysis is rather pessimistic: In many practical situations
the query range is small and will intersect much fewer regions.
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Kd-trees in higher-dimensional spaces

Kd-trees can be also used for point sets in 3- or
higher-dimensional spaces.
Assume the dimension d to be a constant:
O(d · n) storage.
O(d · n log n) construction time.

O(n1− 1
d + k) query time.
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The Range Tree approach

2D range queries are two 1D range queries one on x− and one on
y−coordinate.

Find first the points whose x−coordinate lies in [x : x ′] and worry
about the y−coordinate later.
During the 1D range query a logarithmic number of subtrees is
selected.
The leaves of these subtrees contain exactly the points whose
x−coordinate lies in [x : x ′].
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The Range Tree approach

Canonical Subset of a node v

The subset of points P(v) of P stored in the leaves of the subtree rooted
at v.

P(root(T )) = P

The subset of points whose x−coordinate lies in the query range is
a disjoint union of O(log n) canonical subsets.
We are not interested in all the points in such subsets.
Report the ones whose y−coordinate lies in [y : y′]: This is
another 1D query.
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A 2-dimensional Range Tree

v

P (v)

P (v)

T

Tassoc(v) binary search tree
on y-coordinates

binary search tree
on x-coordinates
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Algorithm

Build2DRangeTree(P)
Build a BST Tassoc on the set Py
Store the points of P at the leaves of Tassoc
if P contains only one point then

Create a leaf v storing this point
Associate Tassoc with v

else
Split P into Pleft and Pright through xmid
vleft ← Build2DRangeTree(Pleft)
vright ← Build2DRangeTree(Pright)
create a node v storing xmid
lc(v)← vleft
rc(v)← vright
Associate Tassoc with v

return v

Preprocessing involves maintaining
two lists of points.
One sorted on x−coordinate and one
sorted on y−coordinate.
The time spend at a node in the
main tree is linear in the size of its
canonical subset.
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Range Tree storage

p

p

p

p
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Storage and costruction time

Each point is stored only once at a given depth.
The total depth is O(log n): the amount of storage is O(n log n).
Since the time spend at a node in the main tree is linear in the
size of its canonical subset the total construction time is the same
as the amount of storage.
Presorting is O(n log n).
Total construction time is O(n log n).
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Algorithm

2DRangeQuery(T , [x : x ′]× [y : y′])
vsplit ← FindSplitNode(T , x, x′)
if vsplit is a leaf then

check if xvsplit must be reported
else {follow the path to x }

v ← lc(vsplit )
while v is not a leaf do

if x ≤ xv then
1DRangeQuery(Tassoc(rc(v)), [y : y′])
v ← lc(v)

else
v ← rc(v)

check if xv must be reported
. . .
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Query time analysis

The time spend to report the points whose y−coordinate lie in the
range [y : y′] is O(log n + kv) where kv is the number of points
reported in this call.

Q(n) =
∑

v O((log n) + kv) where the summation is over all nodes
visited.∑

v kv = k, the total number of reported points. The search paths
of x and x ′ have length O(log n):

∑
v O(log n) = O(log2 n).

Q(n) = O(log2 n + k).
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Higher-Dimensional Range Trees
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Higher-Dimensional Range Trees

P is a set on n points in d−dimensional space (d ≥ 2):
O(n logd−1 n) storage,
O(n logd−1 n) construction time,
O(logd n + k) query time.
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The idea of Fractional Cascading

S1, S2 are two set of objects with real number keys.

The problem is to report all objects in S1 and S2 whose keys lie in
[y : y′].
The keys are in sorted order in arrays A1 and A2.
Solution: two binary searches in A1 and A2.
If S2 ⊆ S1 we can avoid the binary search in A2.
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A Layered Range Tree
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A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].

At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.
For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.
Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.
Total query time becomes O(log n + k).
Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44



A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].
At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.

For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.
Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.
Total query time becomes O(log n + k).
Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44



A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].
At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.
For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.

Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.
Total query time becomes O(log n + k).
Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44



A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].
At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.
For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.
Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.

Total query time becomes O(log n + k).
Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44



A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].
At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.
For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.
Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.
Total query time becomes O(log n + k).

Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44



A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].
At vsplit find the entry in A(vsplit) whose y−coordinate is larger
than or equal to y in O(log n) time.
For all O(log n) nodes on the paths to x and x ′ maintain pointers
to the entries in A whose y−coordinate is larger than or equal to y
in O(1) time.
Report the points of A(v) in O(1 + kv) time, kv is the number of
reported points at node v.
Total query time becomes O(log n + k).
Fractional cascading also imporves the query time of
higher-dimensional range trees by a logarithmic factor.

Advanced Data Structures (Spring 2007) Orthogonal Range Searching CoReLab Graduate Course 44 / 44


	Introduction
	1-Dimensional Range Searching
	Kd-Trees
	Range Trees
	Fractional Cascading

