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Graph Embedding

e Given is G(V, E,w), an undirected edge weighted graph with
w;; = w(e;;) = w(v,vj) > 0.

e Points p1,ps,---,pn € R% form an embedding of G if and only
it |pi —pj’ = wZ]Vez] e k.
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G(V, E,w) embedded in R3
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Non embeddable graphs in any space

e All these graphs that violate the triangle inequality.

e AIso there are graphs that don't violate the triangle inequality
but cannot be embedded in any space.
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N — \/75 ~ 0.577 but the given edge weight is 0.56.

e In general take the d-dimensional 1-simplex, and a point at-
tached to the barycenter. Assign to every edge that con-
nects the barycenter to the simplex, a weight less than the
real length of the corresponding line segment.



Facts for embeddable graphs

e If G is embeddable in R? then d <n — 1.

e There are cases where d =n —1 (G is embedded in R*~1 as
a 1-simplex).

e If G is embeddable in R? then it is embeddable in RY where
dr = |[VBEFIZL | (Barvinok, 1995).




Realizable Graphs

e A graph G(V, E) is realizable in R% iff G is embeddable in R
for any choice of edge weights.

e For example G = K4 is not 2-realizable because G cannot
be embedded in RQ, for any choice of edge weights (consider
the case of w(e) = 1 for every edge).

e Recently (2004) Bob Connely, completely characterized re-
alizable graphs in R1, R? and R3.



Partial Euclidean Distance Matrix

e Let G(V, E,w) be an undirected edge weighted graph.

e The n x n matrix Dp = (d;;) = ng is called the Partial

Euclidean Distance Matrix associated with G.
— Dp is symmetric,
— has zero diagonal,

— dijj = wi; V ejj € E, otherwise d;; is undefined.






Congruent Embeddings

e Two embeddings of the same graph are congruent if they
have identical Distance Matrices.

e [ he Distance Matrix is invariant under distance preserving
transformations such as translations, rotations and space in-
Versions.
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Non Congruent Embeddings

e Two embeddings of the same graph with different Distance
Matrices.

4 P4
g D1 P2

<3
' »

P2 Ps3 p3

P1




Euclidean Distance Matrix Completion Problem

e Assign values to the undefined elements of Dp in a way that
there exist points p1,po, - -, pn € R? such that dij = ||pz-—pj||2.

e T his problem is equivalent to the Graph Embedding prolbem:

Graph G(V, E,w) is embeddable if and only if the graph’s
partial Distance Matrix can be completed to a Eu-
clidean Distance Matrix.
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Conditions for Euclidean Distance Matrices

e Matrix D is a Euclidean Distance Matrix if and only if matrix
X:

1
wzyzi(dzn+djn_dz])for alli,j: 1,---,n—1

IS positive semidefinite.
e The smallest embedding dimension of D is rank(X).

e [ he embeddability of a an u.e.w complete graph G = K, can
be effectively computed.
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Arbitrary Graphs

e [ he d-embeddability problem is NP-hard. Remains NP-hard
even when the edge weights are all restricted to 1 or 2.

e Uniqueness of embeddings is also NP-hard.

e [ he complexity of the Embeddability problem is not settled.
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Embeddability of almost complete graphs

The embeddability of an almost complete graph that misses one
edge is max(dy, d>).

V] e—r =2 X

e KernelUwvy embedded in R%. Kernel Uwvs, embedded in R4
e Assume dq < dy, and extend the di-embedding to R%.
e Draw n — 2 hyperspheres. Take as wvp, a common point of

the hyperspheres.
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Embeddability of almost complete graphs
(cont.)
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The embeddability of an almost complete graph that misses k
edges that are all incident to one vertex is max(di,d>).
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Star of cliques
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Tree of cliques
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Conclusion — Open Problems

e Characterize the embeddability problem in other graph topolo-
gies.
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