On the Embeddability of Graphs in Euclidean Spaces

Christodoulos Fragoudakis (chfrag@cs.ntua.gr)

13 December 2004

Outline

- Graph Embedding
- Facts for Embeddable Graphs
- Realizable Graphs
- Distance Matrices
- Embeddability of Almost Complete Graphs
- Conclusion Open Problems

Graph Embedding

- Given is G(V, E, w), an undirected edge weighted graph with $w_{ij} = w(e_{ij}) = w(v_i, v_j) > 0.$
- Points $p_1, p_2, \dots, p_n \in \mathbb{R}^d$ form an embedding of G if and only if $|p_i p_j| = w_{ij} \forall e_{ij} \in E$.

G(V, E, w) embedded in \mathbb{R}^3

Non embeddable graphs in any space

- All these graphs that violate the triangle inequality.
- Also there are graphs that don't violate the triangle inequality but cannot be embedded in any space.

• $a = \frac{\sqrt{3}}{3} \approx 0.577$ but the given edge weight is 0.56.

• In general take the *d*-dimensional 1-simplex, and a point attached to the barycenter. Assign to every edge that connects the barycenter to the simplex, a weight less than the real length of the corresponding line segment.

Facts for embeddable graphs

- If G is embeddable in \mathbb{R}^d then $d \leq n-1$.
- There are cases where d = n 1 (G is embedded in \mathbb{R}^{n-1} as a 1-simplex).
- If G is embeddable in \mathbb{R}^d then it is embeddable in \mathbb{R}^{d^*} where $d^* = \lfloor \frac{\sqrt{8|E|+1-1}}{2} \rfloor$ (Barvinok, 1995).

Realizable Graphs

- A graph G(V, E) is realizable in \mathbb{R}^d iff G is embeddable in \mathbb{R}^d for any choice of edge weights.
- For example G = K₄ is not 2-realizable because G cannot be embedded in ℝ², for any choice of edge weights (consider the case of w(e) = 1 for every edge).
- Recently (2004) Bob Connely, completely characterized realizable graphs in \mathbb{R}^1 , \mathbb{R}^2 and \mathbb{R}^3 .

Partial Euclidean Distance Matrix

- Let G(V, E, w) be an undirected edge weighted graph.
- The $n \times n$ matrix $D_P = (d_{ij}) = w_{ij}^2$ is called the Partial Euclidean Distance Matrix associated with G.
 - D_P is symmetric,
 - has zero diagonal,
 - $d_{ij} = w_{ij}^2 \forall e_{ij} \in E$, otherwise d_{ij} is undefined.

$$D_P = \begin{bmatrix} 0 & a & b & c & d & ? \\ a & 0 & e & ? & ? & f \\ b & e & 0 & g & ? & h \\ c & ? & g & 0 & i & j \\ d & ? & ? & i & 0 & f \\ ? & f & h & j & f & 0 \end{bmatrix}$$

Congruent Embeddings

- Two embeddings of the same graph are congruent if they have identical Distance Matrices.
- The Distance Matrix is invariant under distance preserving transformations such as translations, rotations and space inversions.

Non Congruent Embeddings

• Two embeddings of the same graph with different Distance Matrices.

Euclidean Distance Matrix Completion Problem

- Assign values to the undefined elements of D_P in a way that there exist points $p_1, p_2, \dots, p_n \in \mathbb{R}^d$ such that $d_{ij} = ||p_i - p_j||^2$.
- This problem is equivalent to the Graph Embedding prolbem:

Graph G(V, E, w) is embeddable if and only if the graph's partial Distance Matrix can be completed to a Euclidean Distance Matrix.

Conditions for Euclidean Distance Matrices

Matrix D is a Euclidean Distance Matrix if and only if matrix X:

$$x_{ij} = \frac{1}{2}(d_{in} + d_{jn} - d_{ij})$$
 for all $i, j = 1, \dots, n-1$

is positive semidefinite.

- The smallest embedding dimension of D is rank(X).
- The embeddability of a an u.e.w complete graph $G = K_n$ can be effectively computed.

Arbitrary Graphs

- The *d*-embeddability problem is NP-hard. Remains NP-hard even when the edge weights are all restricted to 1 or 2.
- Uniqueness of embeddings is also NP-hard.
- The complexity of the Embeddability problem is not settled.

Embeddability of almost complete graphs

The embeddability of an almost complete graph that misses one edge is $max(d_1, d_2)$.

- Kernel $\cup v_1$ embedded in \mathbb{R}^{d_1} . Kernel $\cup v_2$ embedded in \mathbb{R}^{d_2}
- Assume $d_1 \leq d_2$, and extend the d_1 -embedding to \mathbb{R}^{d_2} .
- Draw n 2 hyperspheres. Take as v_2 , a common point of the hyperspheres.

Embeddability of almost complete graphs (cont.)

The embeddability of an almost complete graph that misses k edges that are all incident to one vertex is $max(d_1, d_2)$.

Star of cliques

Tree of cliques

Conclusion – Open Problems

• Characterize the embeddability problem in other graph topologies.