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Graph Embedding

• Given is G(V, E, w), an undirected edge weighted graph with
wij = w(eij) = w(vi, vj) > 0.

• Points p1, p2, · · · , pn ∈ Rd form an embedding of G if and only
if |pi − pj| = wij ∀ eij ∈ E.
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Non embeddable graphs in any space

• All these graphs that violate the triangle inequality.

• Also there are graphs that don’t violate the triangle inequality

but cannot be embedded in any space.
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• a =
√

3
3 ≈ 0.577 but the given edge weight is 0.56.

• In general take the d-dimensional 1-simplex, and a point at-

tached to the barycenter. Assign to every edge that con-

nects the barycenter to the simplex, a weight less than the

real length of the corresponding line segment.
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Facts for embeddable graphs

• If G is embeddable in Rd then d ≤ n− 1.

• There are cases where d = n− 1 (G is embedded in Rn−1 as

a 1-simplex).

• If G is embeddable in Rd then it is embeddable in Rd∗ where

d∗ = b
√

8|E|+1−1
2 c (Barvinok, 1995).
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Realizable Graphs

• A graph G(V, E) is realizable in Rd iff G is embeddable in Rd

for any choice of edge weights.

• For example G = K4 is not 2-realizable because G cannot

be embedded in R2, for any choice of edge weights (consider

the case of w(e) = 1 for every edge).

• Recently (2004) Bob Connely, completely characterized re-

alizable graphs in R1, R2 and R3.
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Partial Euclidean Distance Matrix

• Let G(V, E, w) be an undirected edge weighted graph.

• The n × n matrix DP = (dij) = w2
ij is called the Partial

Euclidean Distance Matrix associated with G.

– DP is symmetric,

– has zero diagonal,

– dij = w2
ij ∀ eij ∈ E, otherwise dij is undefined.
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0 a b c d ?
a 0 e ? ? f
b e 0 g ? h
c ? g 0 i j
d ? ? i 0 f
? f h j f 0


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Congruent Embeddings

• Two embeddings of the same graph are congruent if they

have identical Distance Matrices.

• The Distance Matrix is invariant under distance preserving

transformations such as translations, rotations and space in-

versions.
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Non Congruent Embeddings

• Two embeddings of the same graph with different Distance

Matrices.
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Euclidean Distance Matrix Completion Problem

• Assign values to the undefined elements of DP in a way that

there exist points p1, p2, · · · , pn ∈ Rd such that dij = ‖pi−pj‖2.

• This problem is equivalent to the Graph Embedding prolbem:

Graph G(V, E, w) is embeddable if and only if the graph’s

partial Distance Matrix can be completed to a Eu-

clidean Distance Matrix.
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Conditions for Euclidean Distance Matrices

• Matrix D is a Euclidean Distance Matrix if and only if matrix

X:

xij =
1

2
(din + djn − dij) for all i, j = 1, · · · , n− 1

is positive semidefinite.

• The smallest embedding dimension of D is rank(X).

• The embeddability of a an u.e.w complete graph G = Kn can

be effectively computed.
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Arbitrary Graphs

• The d-embeddability problem is NP-hard. Remains NP-hard

even when the edge weights are all restricted to 1 or 2.

• Uniqueness of embeddings is also NP-hard.

• The complexity of the Embeddability problem is not settled.
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Embeddability of almost complete graphs

The embeddability of an almost complete graph that misses one
edge is max(d1, d2).

Kn−2v1 v2

• Kernel ∪ v1 embedded in Rd1. Kernel ∪ v2 embedded in Rd2

• Assume d1 ≤ d2, and extend the d1-embedding to Rd2.

• Draw n − 2 hyperspheres. Take as v2, a common point of
the hyperspheres.
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Embeddability of almost complete graphs

(cont.)
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The embeddability of an almost complete graph that misses k

edges that are all incident to one vertex is max(d1, d2).

14



Star of cliques

Kk KlKm

Kg KdKa

Kc

Kf

Kb

Ke

15



Tree of cliques
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Conclusion – Open Problems

• Characterize the embeddability problem in other graph topolo-

gies.
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